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1. Introduction  

In this notes, we study the indifference price for derivatives in an asymptotically complete market. To
achieve this goal, a generalized version of Gärtner-Ellis theorem is needed to analyze indifference price
behavior in the limit. We consider an optimal investing problem with one risky asset and one
contingent claim in the market where risk-aversion investors are characterized by exponential utility.
Both trinomial and Gaussian models in term of risk asset return are provided to get an insight into the
generalized Gärtner-Ellis theorem.

 

2. Large deviation principles theory  

The main results from large deviation theory, including large deviations principle, Cramér’s and
Gärtner-Ellis Theorem, are stated in this part. In the next prat, we will try to connect the indifference
price with those results.

Let  be a measure space and  be a family of probability measures.  satisfies a
large deviations principle (LDP) if, for all ,

For  (all the open sets are measurable), the LDP equavalent to

2.1 Rate function and weak large deviations principle  

We define a function  is lower semicontinuous (l.s.c) as {  is compact for all  for 
. Then, let  be a topological space and  is a rate function if it is

lower semicontinuous. Furthermore, I is a good rate function if {  is compact for all  .
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The weak LDP in the Borel case is a slight relaxation,

A family  is exponentially tight if, for every  there is a compact set  such that 
. And, if  is polish (separable and complete), then the LDP and

goodness of  imply exponentially tight.

Lemma : For ,

1. if an exponentially tight family  satisfies a weak LDP then it satisfies a full LDP;
2. if an exponentially tight family  satisfies the LDP lower bound for open sets, for a rate

function , then  is a good rate function.

To show a family  satisfies a full LDP, one can just show it is exponentially tight and satisfies a
weak LDP.

2.2 Cramér’s Theorem  

The goal for Cramér's theorem is giving conditions which make the empirical average of i.i.d. random
variables satisfy an LDP.

Let  be  -valued i.i.d. random vectors with distribution  under , and let 
be the empirical average. Let  be the distribution of  a probability measure on  .

The question is whether the family  satisfies an LDP, and if so, what is the rate function?

Let's build the rate function from the cumulant generating function

where the domain of  is .

The Fenchel-Legendre transform of  is

Define  as the domain of . Here, one can prove that  is a rate
function. If 0  then  is a good rate function. Then, Cramér's theorem are stated as follow,

Theorem : If 0  satisfies the LDP with good rate function 

2.3 Gärtner-Ellis theorem  
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Let  be a sequence of random variables, where for each  is distributed as  , with
cumulant generating function  . Assume that, for all  ,  exists as an
extended real number, and  . Then, Gärtner-Ellis theorem gives

1.  is a good rate function as 
2. , where  is compact;
3.  is exponentially tight, so 1) holds for any closed set 
4. For any open set  

If we can find  s.t  then  is said to be an exposed
point of  with exposing hyperplane  Define  is an exposed point with an exposing
hyperplane .

This includes the setting for Cramér's theorem as a special case.

 

3. Market with Derivative Securities  

We consider an investor in the financial market with initial wealth , and the wealth process 
using portfolio strategy . His or her position in derivative is , and the payoff of derivative at terminal
time  is . We assume interest rate .

The optimal utility problem for this investor is,

Define , then we can transfer the original optimal problem into its dual
problem.

Proposition 1 : The dual problem for optimal problem (8) with constrains,

where .

The equality holds if and only if  s.t.

where  is the inverse function of first order derivative of utility function , and
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Proof : By the definition of , we have . Take ,
then,

where the equality holds if and only if . Take expecation from both sides and
consider (9) and (10), for any  and 

the equality holds if and only if . Then, one can take the supreme over  on the right
hand side and infimum over  and , (11) proved. 

3.1 Exponential utility  

In this notes, we take a specific form of utility: , where  measures risk-averse level.
Assume initial wealth  and . In this setting, we obtained  and
dual problem

3.2 Indifference price  

The indifference price  for derivatives in the market is the per-unit buying price which equals the
utility for paying  to get  unit of  with doing nothing.

For exponential utility,

Then the indifferen price in this case would equals , which turns out to be a
function of position ,

As  with , by (14), we can express it in the dual form

Also,

Here,  optimizes  over set . Therefore, the indifference price is
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We introduce the "minimal entropy measure"  via ,

 can be transformed in term of relative entropy,

From above inequality, it is easy to see that  converges to h when  fixed and . However, the
question we want to ask is how does the indifference price behave if there is a large positon in
derivatievs, i.e. . To answer this question, we connect it with large deviation theory and an
extension to Gärtner-Ellis theorem is needed.

3.3 Connection between indifference price and large deviation theory  

For any , there exists an unique optimal portfolio . Denote  as  , then for ,

Therefore,  and  satisfies : 1)  and 2) . Combine these two conditions, 
can be solved as,

Now, we can change into minimal entropy measure,

where . And, under , the indifference price is
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For large position , we can take a sequence of  and define a sequence of indiffrent
price

To explore the limiting behavor, we need to find the right rate  such that  when 
.

3.4 Differences between Laplace theorem , Gärtner-Ellis theorem and our goal  

For Laplace theorem,  is a random variable, when ,

For Gärtner-Ellis theorem,  is sequence of random variable, when , if

and  , then , the distribution of , has LDP with rate function , the Fenchel-Legendre
transform of .

For our model,  is a function of , when  , we want to identify a generalized Gärtner-
Ellis theorem in terms of that

and some condition with respect to 

 

4. Trinomial Case  
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Figure 1. Trinomial Model

To get an insight into our generalized Gärtner-Ellis theorem, we consider a one period trinomial tree
model. As figure 1 shows, there are three states  , associated with probability 

. The underly asset price is 1 at time 0, and increases  for each state. The payoff
of the derivative are  in each state. To ensure the no arbitrage conditions, we assume that 

 and .

In this scenario, the original optimal utility problem turns into,

Take the first order condition,

As  for sure,  is a decreasing function in  with  and  . So,
there exists a portfolio strategy  which set .

Proposition 2 : The optimal portfolio strategy is

where  and  satisfies .

If , then

by defining  and .
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Proof : If , the optimal portfolio strategy would be linear in  as follow,

For the case , the optimal portfolio strategy  can be divided into two parts,  and additional
position  . Then, given the first order condition,

we multiply  on both sides,

Therefore,  must satisfies following equation,

where  and .

If , then . By , we have explicit ,

 

To ensure the incompleteness of the market, condition ensuring the derivative not replicable is needed.
If the derivative is replicable, there exists an trading strategy  satisfies

which means the payoff of derivative in middle state is a linear combination of payoff in the other two
states.

As mentioned in 3.3, the key to generalize Gärtner-Ellis theorem is identifying converging rate  to set
the indifference price  .
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If there is a sequence , with  and associated probability  , then
a corresponding sequence  can be found via (29),

If  takes value  and  is , then above equation becomes

As the market become asymptotically complete, i.e.  in our trinomial case, 

blows up to , if . In this case, (31) only holds if  or 

. If ,  converges to 0 and  equals , which violated our
assumptions.

Now, the indifference price can be calculated in the trinomial case.

where

and  is above equation taking .

If we set  with , then when ,

It can be further simplified,
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With asymptotically complete market, our limit indifference price is still related to the middle states of
the market.

 

5. Continuous Case  

In continuous case, we set  and , where  and payoff of derivative  has joint
normal distribution as follow,

 can be further decomposed as  where .  can be decomposed as 
, where  is orthogonal to  with distribution  and .

Then  and  can be specified as follow,

If we replace  with a sequence of  converging to , the market becomes asymptotically complete,
and the corresponding return and payoff are marked as .

In this case, our original optimal problem becomes

From (36), it is easy to observe that . Let's focus on the , which solves
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It can be easily observed that . Then , which is a linear function
of . With optimal trading strategy  ,

which is no longer a function of  . So we need other more delicate distribution to generalize Gärtner-
Ellis theorem in continuous setting.

 

6. Further Research  

For the further research, one can be done is generalizing one-period trinomial model into multi-period
trinomial model to see whether the  is a function of . Furthermore, one can consider other
distributions like double exponential distribution and mixed Gaussian distribution. As we can see from
normal distribution case, market becomes asymptotically complete as correlation  converges to . In
the same spirit, the key point for more general model is the condition that leads to asymptotically
complete market.
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