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1. Introduction

In this notes, we study the indifference price for derivatives in an asymptotically complete market. To
achieve this goal, a generalized version of Gartner-Ellis theorem is needed to analyze indifference price
behavior in the limit. We consider an optimal investing problem with one risky asset and one
contingent claim in the market where risk-aversion investors are characterized by exponential utility.
Both trinomial and Gaussian models in term of risk asset return are provided to get an insight into the
generalized Gértner-Ellis theorem.

2. Large deviation principles theory

The main results from large deviation theory, including large deviations principle, Cramér’s and
Girtner-Ellis Theorem, are stated in this part. In the next prat, we will try to connect the indifference
price with those results.

Let (#, %) be a measure space and {P.},_,
large deviations principle (LDP) if, for allT" € 4,

be a family of probability measures.{P,},_, satisfies a

3I: —[0,00]s.t. — inrf I(z) < lim, 4 elogP, (T) < lim, o elogP. (") < — inf I(z) (1)
zel™ T

zel

For B C 4 (all the open sets are measurable), the LDP equavalent to

lim,_,p elog Pe(F) < — inlfw I(z) for all F closed (2)
xe

lim_, elogPe(G) > — iné[(x) for all G open (3)
T

2.1 Rate function and weak large deviations principle

We define a function I is lower semicontinuous (ls.c) as {I < a} is compact for all o € R for
I:.% —[0,00]. Then, let (., 7) be a topological space and I : ./ — [0, 00| is a rate function if it is
lower semicontinuous. Furthermore, I is a good rate function if {1 < a} is compactforalla > 0.



The weak LDP in the Borel case is a slight relaxation,

lim, g e logPe(F) < — inﬁ[(x) for all F' compact (4)
<
lime — OeclogPe(G) > — ing I(z) for all G open (5)
BAS

A family {P, },_, is exponentially tight if, for every 0 < a < oo, there is a compact set K, such that
limsup, ., elogP. (K§) < —a. And, if . is polish (separable and complete), then the LDP and
goodness of I imply exponentially tight.

Lemma : For B, C %,

1. if an exponentially tight family {IP. }__, satisfies a weak LDP then it satisfies a full LDP;
2. if an exponentially tight family {P, },_, satisfies the LDP lower bound for open sets, for a rate
function I, then I is a good rate function.

To show a family {PP,} satisfies a full LDP, one can just show it is exponentially tight and satisfies a
weak LDP.

2.2 Cramér’s Theorem

The goal for Cramér's theorem is giving conditions which make the empirical average of i.i.d. random
variables satisfy an LDP.

Let {X;}° be R? -valued i.i.d. random vectors with distribution g under P, and let S, := % Yo Xi
be the empirical average. Let u,, be the distribution of S,,, a probability measure on (R‘i, i (]Rd)) .

The question is whether the family {u, };’:’:1 satisfies an LDP, and if so, what is the rate function?
Let's build the rate function from the cumulant generating function
A(X) := log E [exp(), X1))] (6)
where the domain of Ais 2, := {\ € RY: A(N) < 0o}
The Fenchel-Legendre transform of A is

A*(z) := sup{(\, z) — A(N)} (7)
AeR?

Define 2, := {x € R?: A*(z) < oo} as the domain of A*. Here, one can prove that A*(z) is a rate
function. If 0e 2° then A* is a good rate function. Then, Cramér's theorem are stated as follow,

Theorem : If 0c P, {1} satisfies the LDP with good rate function A*

2.3 Gartner-Ellis theorem



Let {Z,},~, be a sequence of random variables, where for each n, Z, is distributed as u, , with
cumulant generating function A,, . Assume that, for all A € R? A(A) :=lim, o %An (M) exists as an
extended real number, and 0 € &, . Then, Girtner-Ellis theorem gives

1. A*(z)is a good rate functionas 0 € 2,

2. lim,, ,oo %log pn (T') < —infyer A*(y), where I is compact;
3. {un} is exponentially tight, so 1) holds for any closed set F

4. For any open set G, lim,, , . =log i, (G) > —infyccry A*(y)

If we can find \* =: A\, s.t ((A*,y) — A*(y)) — ((A*,20) — A* (29)) > 0 then y is said to be an exposed
point of A*, with exposing hyperplane \,. Define % := {y : y is an exposed point with an exposing
hyperplane A\, and A\, € Z; }.

This includes the setting for Cramér's theorem as a special case.

3. Market with Derivative Securities

We consider an investor in the financial market with initial wealth X, = z,, and the wealth process XT
using portfolio strategy «r. His or her position in derivative is 7, and the payoff of derivative at terminal
time 7' is h. We assume interest rate » = 0.

The optimal utility problem for this investor is,

U(zo,7) = sup E[U(XT. + Th)] (8)
s.t. X() = Xy (9)
E[X7.2zr] < ¢, V7 and for any random variable zr > 0 (10)

Define V(y) = sup,.r (U(z) — zy), then we can transfer the original optimal problem into its dual
problem.

Proposition 1 : The dual problem for optimal problem (8) with constrains,
5171Tp E[U(XT + 7h)] < Z;Ielgf }\EE(E[V(AzT) + A(zo + 7E[hzr])]) (11)
where & = {zr : postive random variable s.t. E[X] 27| < z, V7}.
The equality holds if and only if (7, A, z7) s.t.
X7 = I(\zr) — 7h (12)
where I(-) is the inverse function of first order derivative of utility function U, and

E[XT.2r] = zo (13)



Proof : By the definition of V(y), we have U(z) < V(y) + zy. Take z = X[ (w) + 7h(w),y = Azt (w),
then,

U(X% +1h) < V(Azr) + Azr (X7 + 7h) a.s.

where the equality holds if and only if U(X;E + 7h) = Azr a.s.. Take expecation from both sides and
consider (9) and (10), forany A > 0 and zp € &

E[U(XT + 7h)] < E[V(Azr) 4+ Az (XF + Th)]
< Azg + )\TE[ZTh] + E[V()\ZT)]

the equality holds if and only if E[X7.2z7] = . Then, one can take the supreme over 7 on the right
hand side and infimum over zz and A, (11) proved. [

3.1 Exponential utility

In this notes, we take a specific form of utility: U(x) = —e™7*, where v measures risk-averse level.
Assume initial wealth 2y = 0 and E[z7] = 1. In this setting, we obtained V(y) = %(log(%) —1) and

dual problem

U( inf {rE[zrh] + %E[zT log(zr)]}) (14)

ZTE,@:
3.2 Indifference price

The indifference price p; for derivatives in the market is the per-unit buying price which equals the
utility for paying p; 7 to get 7 unit of h with doing nothing.

For exponential utility,
U(zg,7) = sup E[—e "1™ — qup ]E[—eiV(””OJrfOT mASHTh)] — _e1%014(0, 7) (15)

Then the indifferen price in this case would equals U(zy — p;7,7) = U(zo,0), Which turns out to be a
function of position 7,

1 U, )
pi(m) = _Flog(u(o,ﬂ)

) (16)

AsU(0,7) = sup, E[U(XF + 7h)] with zy = 0, by (14), we can express it in the dual form
U(0,7) = —einfigez {7Elzrh}+ 3 Elor loglar)])) (17)
Also,
U(0,0) = —eEpex (FELr log(r)) . _ Bl log()) (18)

Here, 20, optimizes %E[ZT log(zr)] over set 2. Therefore, the indifference price is



pr(r) = 2 ( inf {7E[zrh] + %(E[ZT log(2r)] — E[% log(%)))}) (19)

T 2r€¥

We introduce the "minimal entropy measure” Q° via 22

T’
dQ®
QO :Z%ZW“FT (20)

pr can be transformed in term of relative entropy,

p1(r) = inf {rBlerh] + = (Elzr log(ar)) — B[ og()])}
~ inf{(rEC[h] + — (H(QIP) ~ H(Q'IP)}
< 7EY [1]

From above inequality, it is easy to see that p; (7) converges to h when 7 fixed and P — 0. However, the
question we want to ask is how does the indifference price behave if there is a large positon in
derivatievs, i.e. 7 — oo. To answer this question, we connect it with large deviation theory and an
extension to Girtner-Ellis theorem is needed.

3.3 Connection between indifference price and large deviation theory

For any 7 € R, there exists an unique optimal portfolio 7(7). Denote X:’;(T) as X ; , then for r = 0,

(0,0) = U(E[ log(4))) = sup E[U(X7)] = E[U(X7)]

Therefore, 23, and X;), satisfies : 1) U( X?F) = A2} and 2) E[23] = 1. Combine these two conditions, 2%,

can be solved as,

. o1 X7
2p = (21)
E[e_'YXT]

Now, we can change into minimal entropy measure,

-0
ef’yXT

U(O’ T) = E[_e_’YXT_’YTh] = E[e*’YT[%(X;*ng)Jrh} X

U(O, 0) a E[—Q—VX(I)"] E[e"?’j{;]

¢ X0 PN | d 0
= E[ef’YT[%(XT*XT)Jrh] % Z%] _ E[e*’YT[%(XT*XT)+h] % (;%) |.FT]

_ EO [e*"/TY(T)]
where Y () = %(X; — X;) + h. And, under Q°, the indifference price is

1
pr(7) = —;10g E0[e™Y ()] (22)



For large position 7 — oo, we can take a sequence of 7, =1 -r, and define a sequence of indiffrent
price

1

i, o8 Ep [t )] (23)
n

p}l (lrn) = -

To explore the limiting behavor, we need to find the right rate r, such that p%(Ir,) — p>(l) when

T, — 00.
3.4 Differences between Laplace theorem , Girtner-Ellis theorem and our goal

For Laplace theorem, Y is a random variable, when r,, — oo,

1
L ogEfeinY] o ess 'squ , forl >0 (24)
Tn essinfY , forl < 0
For Girtner-Ellis theorem, Y, is sequence of random variable, when r,, — oo, if
1 Ir,Y,
—IlogE[e" "] — A(I) (25)
lr,

and 0 € 2, , then p,,, the distribution of Y, has LDP with rate function A*([), the Fenchel-Legendre
transform of A.

For our model, Y, (Ir,,) is a function of r,, when r, — oo, we want to identify a generalized Gértner-
Ellis theorem in terms of that

1
—log E[e (7] - (1) (26)

Tn

and some condition with respect to P[(Y,,|l) € 4]

4. Trinomial Case
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Figure 1. Trinomial Model

To get an insight into our generalized Gértner-Ellis theorem, we consider a one period trinomial tree
model. As figure 1 shows, there are three states {up, middle, down} , associated with probability
{P,, P, P;}. The underly asset price is 1 at time 0, and increases {u, m, —d} for each state. The payoff
of the derivative are {h,, h,,, hq} in each state. To ensure the no arbitrage conditions, we assume that
u>m > —dandd > 0.

In this scenario, the original optimal utility problem turns into,

sup _[Puefﬁy(ﬂ'u%»'rhu) + Pmef'y(7rm+7'hm) + Pdef'y(fmﬂﬂrhd)] (27)

™

Take the first order condition,
0=g(m):= uP,e "t 4y p e Tt the) g p o —v(—mdtTha) (28)

As ¢/ () < 0 for sure, g(w) is a decreasing function in 7 with g(+o00) = —o0 and g(—o0) = +oo . So,
there exists a portfolio strategy 7« = () which set g(7) = 0.

Proposition 2 : The optimal portfolio strategy is

#(r) =7%(r) + 6 (29)

N hg—h uP, . _ _ mP, 7
where 7°(r) = 27 + . (u1+ 7log( g5, ) and 6 satisfies ef(m+d) _ g=10(u-m) ?meWH :

If m = u%d,then

hd — hu 1 UPu 2 11 7
= T+ lo + sinh™ " (———e 30
vrd " rmrd ®am) T e g G ) (30)

#(7)

m-+d

by defining K = (uP,) " (dP;) "+ and H = ™4 p, 4 2

hag — hm,.



Proof : If mP,, = 0, the optimal portfolio strategy would be linear in 7 as follow,

hd — hu 1 ’U,Pu

~0 _ 1
() u+d T+’y(u+d) og(de

) (31)

For the case mP,, # 0, the optimal portfolio strategy # can be divided into two parts, #° and additional
position 6 . Then, given the first order condition,

0 = uP,e NEH0utrh] 4 oo p oG 4OmiThn] _ gp o=~ +0)d+Th]

we multiply 7@ +0)m+mhul on both sides,

0=u Pue*"/[fro(u*m)+0(ufm)+T(hu*hm)] —dP; 67[7}0(m+d)+0(m+d)fr(hd7hm)] +mP,
hg—hy hg—hu uPy
_ uPuefv[(—fM T log(42- a5 ) (w=m)+6(u—m)+r(hu—hm)] deev[(—fM T i log( ) (me+d) +0(m+-d)—7(ha—him)) mP,
dP _ T— T _ U—1n Pu m-+d d+m - m
= upu(u d ) e (ha—hu)+7(hy —hm)+6(u—m)] —de(u )i Nt (ha—ha)=7(ha—hm)+6(m-+d)] S mP,
u d
— (uP,) S (dPy) T e T T ) (g Buem) _ 2fmid)y |
Therefore, # must satisfies following equation,
m+d d u—m _
efm+d) _ g=blu=m) — yp (uP,) u:d (dPy) wrd T el (u:d hut g ha=hm) _ _mgm e (32)
m-+d
7 i +d -
where K = (uP,) w4 (dP;) " and  — 2l hy + b — P
Ifm = u%d, thenm +d = u —m. By 2(e” — e *) = sinh(z), we have explicit 6,
2 P, . -
9= — " sinh (o erh) (33)
Y(u + d) 2K

To ensure the incompleteness of the market, condition ensuring the derivative not replicable is needed.
If the derivative is replicable, there exists an trading strategy ( satisfies

hy = ¢(1+ u)
{hm:C(1+m) S H=0
he = ¢(1 —d)

which means the payoff of derivative in middle state is a linear combination of payoff in the other two
states.

As mentioned in 3.3, the key to generalize Gértner-Ellis theorem is identifying converging rate r,, to set
the indifference price p™ (Ir,,) — p™> (1) .



If there is a sequence {7, := Ir, }n—12,.., With 7, — oo and associated probability { P}, Py, Pé‘} , then
a corresponding sequence {6, },—1 2. can be found via (29),

m —log Py [yHI(—"—)-1]
—e

e’Y@n (m+d) — 6779" (ufm) — — log P]}L

K

If r,, takes value — log Py, and 7,, is —[log P}, then above equation becomes

Vn(m+d) _ p=bn(u—m) _ T —log P},(yAHI-1) (34)

K

As the market become asymptotically complete, i.e. P,, — 0 in our trinomial case, %e—bg Pr(yHI-1)
vyHI-1
v(m+d)

blows up to +oo, if yHI> 1. In this case, (31) only holds if 6, = (—logP,,) or

0, = J(f:i) (log P,,)- If vHI < 1, %e— log P, (vHI-1) converges to 0 and d equals —u, which violated our
assumptions.

Now, the indifference price can be calculated in the trinomial case.

1 uo,r 1 E[e—Xr—rh
p(r) = ———log(A0 D)y Loy 2l T T (39
T U(O, 0) T E[e*’YXT]
where
E[ef'y)i';f'y'rh] _ Pueffy(frqu'rhu) + Pmef'y(frerThm) + Pdef'y(ffrdJrrhd)
_ ) d X
(By first order condition) = T~ Y p,elrorfutrh] | ﬂPde%(”ﬁe)d’mdl
m
_m-u Pueﬂ[ hd;}; " w(ulm) log(%)]uﬂ@uf“ﬂ’“] + 22 i deev[ hﬁ" T 7(u1+d) log(%)}dﬂedfwhd}
m m
m_u(P)L(dP)L g m—i—d(P)L(dP)L S R
= uP,) v+ 1) utd e wtd e % 4 ——— ) uHd 1) urd e wd e
d
mu . B , dhutuhy ) T’,nn—|—d o4
= (uP,)wd (dPy)wde T wd (——e W 4 ¢
(uP,) T (dPy) 77 €777 (T ety LS oy
AO . . .
and [E[e7*r] is above equation taking 7 = 0.
we set 7 = Ir, withr,, = —lo , then whenn — oo,
If t lr, with r, log Py, th h

dh,, h d _ 1
_ +u d i

OOl _
U u+d d+m

It can be further simplified,



_ dhy +uhy d m+d uU—m 1

(1 - he ha — by — —

PO=— 07 " armuzdm T ura )
d dlu—m d 1

= hn, —|—hd( v - ( ) + —
d+m ut+d (d+m)(u+d) d+m~l

_dhm—l—mhd+ d i
 d4+m d+m ~l

With asymptotically complete market, our limit indifference price is still related to the middle states of

the market.

5. Continuous Case

In continuous case, we set Sy =1 and S; = X + 1, where X and payoff of derivative h has joint

w2, °2)

X can be further decomposed as X = oxZ(1) where Z() ~ N/ (0,1). A" can be decomposed as
h=AZY + BZ®, where Z®? is orthogonal to Z(!) with distribution A (0,1) and o7 = A% + B2,
Then A and B can be specified as follow,

A=opp; B=,/o2(1—p?) (38)

If we replace p with a sequence of {p, } converging to 1, the market becomes asymptotically complete,

normal distribution as follow,

and the corresponding return and payoff are marked as (X", h™).

In this case, our original optimal problem becomes
A
sup E[—e ™7 E[e‘”zm] . inf]E[eﬂ(HTW)X] (39)

From (36), it is easy to observe that #(7) = 7(0) — T%. Let's focus on the 7(0), which solves

X2
. _ . _ 1 T
inf E[e ™| = inf / e X e “xdX
s s 2 2
Ty
72ﬂ20§( 1 7 (X+'y7ra§{)2
2
=inf e™ 2 / e ¥  dX
s
2
27'I'O'X
. ’Y27T U2X
=inf e :

10



It can be easily observed that 7(0) = 0. Then #(7) = #(0) — T% = —TZLXP, which is a linear function
of 7. With optimal trading strategy 7 (7) ,
1 .- N 1
V==X - X)) +h==((r) - #(0)X +h=h—2 (40)
T T ox

which is no longer a function of 7. So we need other more delicate distribution to generalize Girtner-
Ellis theorem in continuous setting.

6. Further Research

For the further research, one can be done is generalizing one-period trinomial model into multi-period
trinomial model to see whether the Y is a function of 7. Furthermore, one can consider other
distributions like double exponential distribution and mixed Gaussian distribution. As we can see from
normal distribution case, market becomes asymptotically complete as correlation p converges to 1. In
the same spirit, the key point for more general model is the condition that leads to asymptotically
complete market.
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